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LETTER TO THE EDITOR 

The Lie derivative of the vorticity vector in an isometric flow 
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Received 14 April 1975 

Abstract. It is shown that in an isometric flow the vorticity vector is invariant under the 
group of motions. 

A fluid flow in general relativity is said to be isometric if there exists a time-like Killing 
vector t, colinear with the fluid velocity vector U,, ie if 

U, = tdt, t2 = t,t" > 0, t , :p+ ( a : ,  = 0. (1) 

Y ( t b , p  = 0 ( 2 )  
ha9(u)w" = 0 (3) 

Ciubotariu (1972a, b) has considered such flows in detail and has shown that 

where Y(r) and Y ( u )  denote the Lie derivatives with respect to t, and U, respectively, 
wZa and U" are the vorticity tensor and the vorticity vector and h, is the magnetic field 
four-vector. Result (3) is important as it can be regarded as a generalization of Ferraro's 
(1937) theorem of isorotation. It is the purpose of this note to show that besides ( 2 )  
and (3) we also have in an isometric flow 

Y(t)o" = 0. (4) 

Instead of starting from first principles, we make use of (2). The vorticity vector w" 
can be expressed in terms of waS as 

= $ p l P w  
P A  P 

where qapLP is the permutation tensor. As 

rl aapv p P  = - g(6;  stf - s; st) - s",s; sg - sap st) - s:(sap s: - s; sg) 

% p v , ~ z  = wapuv + wpvua + %sup. 

Y ( < ) u ,  = 0. 

vapvaY(t)wU = - ~a=w~)%pv, .  

we have 

Now as ( a  is a Killing vector, 

Thus on taking the Lie derivative with respect to (, of both sides of (7), we have 
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If we write dp(t)quPva out explicitly and operate on both sides of (9) by quPvs and note 
that 

p v 5  tlupva = -66: (10) 

and, for example, that 

qupv5qupr. = - 2(6:6: -6t 6:) 

then we obtain 

u(t)os = - 0 B <‘;r. (12) 

Y(<)o@ = 0. (13) 

But as 5, is a Killing vector, trir = 0, so that 

This is the same as saying that in an isometric flow, os is invariant under the group of 
motions. 
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