The Lie derivative of the vorticity vector in an isometric flow

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1975 J. Phys. A: Math. Gen. 8 L58
(http://iopscience.iop.org/0305-4470/8/6/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The Lie derivative of the vorticity vector in an isometric flow

D P Mason
Department of Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa

Received 14 April 1975

Abstract

It is shown that in an isometric flow the vorticity vector is invariant under the group of motions.

A fluid flow in general relativity is said to be isometric if there exists a time-like Killing vector ξ_{α} colinear with the fluid velocity vector u_{α}, ie if

$$
\begin{equation*}
u_{\alpha}=\xi_{\alpha} / \xi, \quad \xi^{2}=\xi_{\alpha} \xi^{\alpha}>0, \quad \xi_{\alpha ; \beta}+\xi_{\beta ; \alpha}=0 \tag{1}
\end{equation*}
$$

Ciubotariu (1972a, b) has considered such flows in detail and has shown that

$$
\begin{align*}
& \mathscr{L}(\xi) \omega_{\alpha \beta}=0 \tag{2}\\
& h_{\alpha} \mathscr{L}(u) \omega^{\alpha}=0 \tag{3}
\end{align*}
$$

where $\mathscr{L}(\xi)$ and $\mathscr{L}(u)$ denote the Lie derivatives with respect to ξ_{α} and u_{α} respectively, $\omega_{\alpha \beta}$ and ω^{α} are the vorticity tensor and the vorticity vector and h_{α} is the magnetic field four-vector. Result (3) is important as it can be regarded as a generalization of Ferraro's (1937) theorem of isorotation. It is the purpose of this note to show that besides (2) and (3) we also have in an isometric flow

$$
\begin{equation*}
\mathscr{L}(\xi) \omega^{\alpha}=0 \tag{4}
\end{equation*}
$$

Instead of starting from first principles, we make use of (2). The vorticity vector ω^{x} can be expressed in terms of $\omega_{\alpha \beta}$ as

$$
\begin{equation*}
\omega^{\alpha}=\frac{1}{2} \eta^{\alpha \beta \lambda \mu} \omega_{\beta \lambda} u_{\mu} \tag{5}
\end{equation*}
$$

where $\eta^{\alpha \beta \lambda \mu}$ is the permutation tensor. As

$$
\begin{equation*}
\eta_{\alpha \sigma \rho v} \eta^{\alpha \beta \lambda \mu}=-\delta_{\sigma}^{\beta}\left(\delta_{\rho}^{\lambda} \delta_{v}^{\mu}-\delta_{\rho}^{\mu} \delta_{v}^{\lambda}\right)-\delta_{\sigma}^{\lambda}\left(\delta_{\rho}^{\mu} \delta_{v}^{\beta}-\delta_{\rho}^{\beta} \delta_{v}^{\mu}\right)-\delta_{\sigma}^{\mu}\left(\delta_{\rho}^{\beta} \delta_{v}^{\lambda}-\delta_{\rho}^{\lambda} \delta_{v}^{\beta}\right) \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\eta_{\sigma \rho v x} \omega^{\alpha}=\omega_{\sigma \rho} u_{v}+\omega_{\rho v} u_{\sigma}+\omega_{v \sigma} u_{\rho} \tag{7}
\end{equation*}
$$

Now as ξ_{α} is a Killing vector,

$$
\begin{equation*}
\mathscr{L}(\xi) u_{\alpha}=0 \tag{8}
\end{equation*}
$$

Thus on taking the Lie derivative with respect to ξ_{α} of both sides of (7), we have

$$
\begin{equation*}
\eta_{\sigma \rho v \alpha} \mathscr{L}(\xi) \omega^{\alpha}=-\omega^{\alpha} \mathscr{L}(\xi) \eta_{\sigma \rho v \alpha} \tag{9}
\end{equation*}
$$

If we write $\mathscr{L}(\xi) \eta_{\text {ovvz }}$ out explicitly and operate on both sides of (9) by $\eta^{\sigma \nu \vee \beta}$ and note that

$$
\begin{equation*}
\eta^{\sigma \nu \vee \beta} \eta_{\sigma \rho v \alpha}=-6 \delta_{\alpha}^{\beta} \tag{10}
\end{equation*}
$$

and, for example, that

$$
\begin{equation*}
\eta^{\sigma \nu \nu \beta} \eta_{\sigma \rho \tau z}=-2\left(\delta_{\eta}^{\nu} \delta_{\alpha}^{\beta}-\delta_{\tau}^{\beta} \delta_{a}^{\nu}\right) \tag{11}
\end{equation*}
$$

then we obtain

$$
\begin{equation*}
\mathscr{L}(\xi) \omega^{\beta}=-\omega^{\beta} \xi_{; \tau} . \tag{12}
\end{equation*}
$$

But as ξ_{α} is a Killing vector, $\xi_{; ~}^{\tau}=0$, so that

$$
\begin{equation*}
\mathscr{L}(\xi) \omega^{\beta}=0 . \tag{13}
\end{equation*}
$$

This is the same as saying that in an isometric flow, ω^{β} is invariant under the group of motions.

References

